-
arpoon.rfixest.Fixest.feglm(fml: str, family: str =
'gaussian'
, vcov: str =None
, weights: str =None
, offset=None
, subset=None
, split: str =None
, fsplit: str =None
, split_keep=None
, split_drop=None
, cluster: list | str =None
, ssc: dict =None
, panel_id=None
, fixef=None
, fixef_rm: 'perfect' | 'singleton' | 'both' | 'none' ='perfect'
, fixef_tol: int =1e-06
, fixef_iter: int =10000
, collin_tol: int =1e-10
, nthreads: int =None
, lean: bool =False
, verbose: int =0
, warn: bool =True
, notes=None
, only_coef: bool =False
, combine_quick=None
, mem_clean: bool =False
, only_env: bool =False
, env=None
, start=None
, etastart=None
, mustart=None
, glm_iter: int =None
, glm_tol: int =None
, *, name: str =None
, keep_est: bool =True
) FixestGLM Estimates GLM models with any number of fixed-effects, by calling
r-fixest
feglmExample (continued): gravity ols
Example continued from
arpoon.rfixest.Fixest
In [1]: pois = fixest.feglm( ...: "Euros ~ log(dist_km) | Origin + Destination + Product + Year", ...: family="poisson", ...: ) ...: In [2]: pois Out[2]: GLM estimation, family = poisson, Dep. Var.: Euros Observations: 38,325 Fixed-effects: Origin: 15, Destination: 15, Product: 20, Year: 10 Standard-errors: Clustered (Origin) Estimate Std. Error z value Pr(>|z|) log(dist_km) -1.52787 0.115678 -13.208 < 2.2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Log-Likelihood: -7.025e+11 Adj. Pseudo R2: 0.764032 BIC: 1.405e+12 Squared Cor.: 0.612021
Now the
Fixest
object has a cache which stores the estimationsIn [3]: fixest Out[3]: Fixest In [4]: etable = fixest.etable() model 1 Dependent Var.: Euros log(dist_km) -1.528*** (0.1157) Fixed-Effects: ------------------ Origin Yes Destination Yes Product Yes Year Yes _______________ __________________ S.E.: Clustered by: Origin Observations 38,325 Squared Cor. 0.61202 Pseudo R2 0.76403 BIC 1.4e+12 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 In [5]: etable Out[5]: shape: (14, 2) ┌─────────────────┬────────────────────┐ │ info ┆ feglm_poisson.0 │ │ --- ┆ --- │ │ str ┆ str │ ╞═════════════════╪════════════════════╡ │ Dependent Var.: ┆ Euros │ │ ┆ │ │ log(dist_km) ┆ -1.528*** (0.1157) │ │ Fixed-Effects: ┆ ------------------ │ │ Origin ┆ Yes │ │ … ┆ … │ │ S.E.: Clustered ┆ by: Origin │ │ Observations ┆ 38,325 │ │ Squared Cor. ┆ 0.61202 │ │ Pseudo R2 ┆ 0.76403 │ │ BIC ┆ 1.4e+12 │ └─────────────────┴────────────────────┘ In [6]: fixest.etable(tex=True) \begingroup \centering \begin{tabular}{lc} \tabularnewline \midrule \midrule Dependent Variable: & Euros\\ Model: & (1)\\ \midrule \emph{Variables}\\ log(dist\_km) & -1.528$^{***}$\\ & (0.1157)\\ \midrule \emph{Fixed-effects}\\ Origin & Yes\\ Destination & Yes\\ Product & Yes\\ Year & Yes\\ \midrule \emph{Fit statistics}\\ Observations & 38,325\\ Squared Correlation & 0.61202\\ Pseudo R$^2$ & 0.76403\\ BIC & $1.4\times 10^{12}$\\ \midrule \midrule \multicolumn{2}{l}{\emph{Clustered (Origin) standard-errors in parentheses}}\\ \multicolumn{2}{l}{\emph{Signif. Codes: ***: 0.01, **: 0.05, *: 0.1}}\\ \end{tabular} \par\endgroup Out[6]: '\\begingroup\n\\centering\n\\begin{tabular}{lc}\n \\tabularnewline \\midrule \\midrule\n Dependent Variable: & Euros\\\\ \n Model: & (1)\\\\ \n \\midrule\n \\emph{Variables}\\\\\n log(dist\\_km) & -1.528$^{***}$\\\\ \n & (0.1157)\\\\ \n \\midrule\n \\emph{Fixed-effects}\\\\\n Origin & Yes\\\\ \n Destination & Yes\\\\ \n Product & Yes\\\\ \n Year & Yes\\\\ \n \\midrule\n \\emph{Fit statistics}\\\\\n Observations & 38,325\\\\ \n Squared Correlation & 0.61202\\\\ \n Pseudo R$^2$ & 0.76403\\\\ \n BIC & $1.4\\times 10^{12}$\\\\ \n \\midrule \\midrule\n \\multicolumn{2}{l}{\\emph{Clustered (Origin) standard-errors in parentheses}}\\\\\n \\multicolumn{2}{l}{\\emph{Signif. Codes: ***: 0.01, **: 0.05, *: 0.1}}\\\\\n\\end{tabular}\n\\par\\endgroup'