- paguro.vcol
Constructor for a
ValidColumnvalidator.You can construct a
ValidColumnvalidator usingvcolin 3 different ways:Call: using
vcolas a functionvcol()Dot Name: chaining your column name to the
vcolobject:vcol.your_column_name()By DataType: specifying the dtype you expect your column to have:
vcol.Integer()
Note
Call is the most general way of using vcol, it allows you to create any
ValidColumnthat you can create using dot name and by data typeThe only difference is that when using call
vcol(), you are free to specify (or not specify!) the parameters:nameanddtype. Using Dot Name the columnnamewill be set to the attribute that you pass. By DataType thedtypewill be set to the one specified by the method, (i.e. vcol.Int64() will set thedtype=polars.Int64, vcol.Integer() will allow the dtype to be any of the polars integer dtypes).If you want to specify validation constraints for the fields in a struct column you must use vcol.Struct().
Let’s see in more details the three different ways and what parameters you can pass to specify the constraints for your column.
Call¶
Call
-
paguro.vcol(name: str | Collection[str] | Selector | None =
None, dtype: IntoDataType | None =None, *, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidColumn Use the
vcolas a function to construct a ValidColumn.- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ The column name.
- dtype: IntoDataType | None =
None¶ - The expected column data type:
a polars datatype
- python types:
int: all the polars integers (signed) float: all the polars floats str: polars string
- required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Dot Name¶
.*
pg.vcol.your_column_name()By DataType¶
Nested
Struct
-
paguro.vcol.Struct(*validators: FieldsValidators, name: str | Collection[str] | Selector | None =
None, dtype: pl.Struct | type[pl.Struct] | None =Struct, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidStruct Struct valid column constructor.
- Parameters:¶
- *validators: FieldsValidators¶
ValidColumn or ValidFrame validators for the fields of the struct column. Think of the struct column as a frame itself.
- name: str | Collection[str] | Selector | None =
None¶ The column name.
- dtype: pl.Struct | type[pl.Struct] | None =
Struct¶ The expected column data type: you can pass a fully defined Stuct, the default is the Struct base with no fields specified.
- required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
Examples¶
In [1]: print( ...: pg.vcol.Struct() ...: ) ...: ValidColumn:Struct(fields=None, name=None, dtype=[Struct], required=True, allow_nulls=False, unique=False, constraints=set())In [2]: print( ...: pg.vcol.Struct(pg.vcol("field", ge=1)) ...: ) ...: ValidColumn:Struct( fields=Validation( valid_columns=ValidColumnList( ValidColumn(name='field', dtype=None, required=True, allow_nulls=False, unique=False, constraints={'ge'}) ), valid_frames=None, ), name=None, dtype=[Struct], required=True, allow_nulls=False, unique=False, constraints=set( )In [3]: print( ...: pg.vcol.Struct(pg.vcol.Struct(pg.vcol("field", ge=1))) ...: ) ...: ValidColumn:Struct( fields=Validation( valid_columns=ValidColumnList( ValidColumn:Struct( fields=Validation( valid_columns=ValidColumnList( ValidColumn(name='field', dtype=None, required=True, allow_nulls=False, unique=False, constraints={'ge'}) ), valid_frames=None, ), name=None, dtype=[Struct], required=True, allow_nulls=False, unique=False, constraints=set( ) ), valid_frames=None, ), name=None, dtype=[Struct], required=True, allow_nulls=False, unique=False, constraints=set( )
Array
-
paguro.vcol.Array(name: str | Collection[str] | Selector | None =
None, inner: PolarsDataType | PythonDataType | None =None, shape: int | tuple[int, ...] | None =None, *, contains: Any | None =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidArray Array valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - inner: PolarsDataType | PythonDataType | None =
None¶ - shape: int | tuple[int, ...] | None =
None¶ - contains: Any | None =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.Array() ...: ) ...: ValidColumn(name=None, dtype=[Array], required=True, allow_nulls=False, unique=False, constraints=set())
List
-
paguro.vcol.List(name: str | Collection[str] | Selector | None =
None, inner: PolarsDataType | PythonDataType | None =None, *, contains: Any | None =None, len_ge: int | None =None, len_gt: int | None =None, len_le: int | None =None, len_lt: int | None =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidList List valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - inner: PolarsDataType | PythonDataType | None =
None¶ - contains: Any | None =
None¶ - len_ge: int | None =
None¶ - len_gt: int | None =
None¶ - len_le: int | None =
None¶ - len_lt: int | None =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.List() ...: ) ...: ValidColumn(name=None, dtype=[List], required=True, allow_nulls=False, unique=False, constraints=set())
Temporal
Date
-
paguro.vcol.Date(name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
None, *, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidDate Date valid column constructor.
- Parameters:¶
- name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
None¶ The column name.
- required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
Examples¶
In [1]: print( ...: pg.vcol.Date() ...: ) ...: ValidColumn(name=None, dtype=[Date], required=True, allow_nulls=False, unique=False, constraints=set())
DateTime
-
paguro.vcol.DateTime(name: str | Collection[str] | Selector | None =
None, time_unit: TimeUnit | None =None, time_zone: str | datetime.tzinfo | None =None, *, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidDateTime DateTime valid column constructor.
- required
Whether there must be a column with the specified name in the target data.
- allow_nulls
Whether the column is allowed to contain null values.
- unique
Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- constraints
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
Examples¶
In [1]: print( ...: pg.vcol.DateTime() ...: ) ...: ValidColumn(name=None, dtype=[Datetime], required=True, allow_nulls=False, unique=False, constraints=set())
Duration
-
paguro.vcol.Duration(name: str | Collection[str] | Selector | None =
None, time_unit: TimeUnit | None =None, *, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidDuration Duration valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - time_unit: TimeUnit | None =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.Duration() ...: ) ...: ValidColumn(name=None, dtype=[Duration], required=True, allow_nulls=False, unique=False, constraints=set())
Time
-
paguro.vcol.Time(name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
None, *, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidTime Time valid column constructor.
- Parameters:¶
- name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
Examples¶
In [1]: print( ...: pg.vcol.Date() ...: ) ...: ValidColumn(name=None, dtype=[Date], required=True, allow_nulls=False, unique=False, constraints=set())
String
String
-
paguro.vcol.String(name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
None, *, contains: str | None =None, contains_any: str | None =None, starts_with: str | None =None, ends_with: str | None =None, len_chars_eq: int | None =None, len_chars_ge: int | None =None, len_chars_gt: int | None =None, len_chars_le: int | None =None, len_chars_lt: int | None =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidString String valid column constructor.
- Parameters:¶
- name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
None¶ - contains: str | None =
None¶ - contains_any: str | None =
None¶ - starts_with: str | None =
None¶ - ends_with: str | None =
None¶ - len_chars_eq: int | None =
None¶ - len_chars_ge: int | None =
None¶ - len_chars_gt: int | None =
None¶ - len_chars_le: int | None =
None¶ - len_chars_lt: int | None =
None¶
- name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
- required
Whether there must be a column with the specified name in the target data.
- allow_nulls
Whether the column is allowed to contain null values.
- unique
Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- constraints
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
Examples¶
In [1]: print( ...: pg.vcol.String() ...: ) ...: ValidColumn(name=None, dtype=[String], required=True, allow_nulls=False, unique=False, constraints=set())
Enum
-
paguro.vcol.Enum(name: str | Collection[str] | Selector | None =
None, categories: pl.Series | Iterable[str] | type[enum.Enum] | None =None, *, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidEnum Enum valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - categories: pl.Series | Iterable[str] | type[enum.Enum] | None =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.Enum() ...: ) ...: ValidColumn(name=None, dtype=[Enum], required=True, allow_nulls=False, unique=False, constraints=set())
Categorical
-
paguro.vcol.Categorical(name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
None, *, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidCategorical Categorical valid column constructor.
- Parameters:¶
- name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
Examples¶
In [1]: print( ...: pg.vcol.Categorical() ...: ) ...: ValidColumn(name=None, dtype=[Categorical], required=True, allow_nulls=False, unique=False, constraints=set())
Numeric
Integer
-
paguro.vcol.Integer(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidInteger Integer valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.Integer() ...: ) ...: ValidColumn(name=None, dtype=[Int128, Int64, Int32, Int16, Int8], required=True, allow_nulls=False, unique=False, constraints=set())
Int8
-
paguro.vcol.Int8(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidInt8 Int8 valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.Int8() ...: ) ...: ValidColumn(name=None, dtype=[Int8], required=True, allow_nulls=False, unique=False, constraints=set())
Int16
-
paguro.vcol.Int16(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidInt16 Int16 valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.Int16() ...: ) ...: ValidColumn(name=None, dtype=[Int16], required=True, allow_nulls=False, unique=False, constraints=set())
Int32
-
paguro.vcol.Int32(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidInt32 Int32 valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.Int32() ...: ) ...: ValidColumn(name=None, dtype=[Int32], required=True, allow_nulls=False, unique=False, constraints=set())
Int64
-
paguro.vcol.Int64(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidInt64 Int64 valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.Int64() ...: ) ...: ValidColumn(name=None, dtype=[Int64], required=True, allow_nulls=False, unique=False, constraints=set())
Int128
-
paguro.vcol.Int128(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidInt128 Int128 valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.Int64() ...: ) ...: ValidColumn(name=None, dtype=[Int64], required=True, allow_nulls=False, unique=False, constraints=set())
UInteger
-
paguro.vcol.UInteger(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidUInteger UInteger valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.UInteger() ...: ) ...: ValidColumn(name=None, dtype=[UInt32, UInt16, UInt8, UInt128, UInt64], required=True, allow_nulls=False, unique=False, constraints=set())
UInt8
-
paguro.vcol.UInt8(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidUInt8 UInt8 valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.UInt8() ...: ) ...: ValidColumn(name=None, dtype=[UInt8], required=True, allow_nulls=False, unique=False, constraints=set())
UInt16
-
paguro.vcol.UInt16(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidUInt16 UInt16 valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.UInt16() ...: ) ...: ValidColumn(name=None, dtype=[UInt16], required=True, allow_nulls=False, unique=False, constraints=set())
UInt32
-
paguro.vcol.UInt32(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidUInt32 UInt32 valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.UInt32() ...: ) ...: ValidColumn(name=None, dtype=[UInt32], required=True, allow_nulls=False, unique=False, constraints=set())
UInt64
-
paguro.vcol.UInt64(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidUInt64 UInt64 valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.UInt64() ...: ) ...: ValidColumn(name=None, dtype=[UInt64], required=True, allow_nulls=False, unique=False, constraints=set())
UInt128
-
paguro.vcol.UInt128(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidUInt128 UInt128 valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.UInt128() ...: ) ...: ValidColumn(name=None, dtype=[UInt128], required=True, allow_nulls=False, unique=False, constraints=set())
Float
-
paguro.vcol.Float(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, is_infinite: bool | None =None, is_nan: bool | None =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidFloat Float valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - is_infinite: bool | None =
None¶ - is_nan: bool | None =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.Float() ...: ) ...: ValidColumn(name=None, dtype=[Float64, Float32], required=True, allow_nulls=False, unique=False, constraints=set())
Float32
-
paguro.vcol.Float32(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, is_infinite: bool | None =None, is_nan: bool | None =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidFloat32 Float32 valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - is_infinite: bool | None =
None¶ - is_nan: bool | None =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.Float32() ...: ) ...: ValidColumn(name=None, dtype=[Float32], required=True, allow_nulls=False, unique=False, constraints=set())
Float64
-
paguro.vcol.Float64(name: str | Collection[str] | Selector | None =
None, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, is_infinite: bool | None =None, is_nan: bool | None =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidFloat64 Float64 valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - is_infinite: bool | None =
None¶ - is_nan: bool | None =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.Float64() ...: ) ...: ValidColumn(name=None, dtype=[Float64], required=True, allow_nulls=False, unique=False, constraints=set())
Decimal
-
paguro.vcol.Decimal(name: str | Collection[str] | Selector | None =
None, precision: int | None =None, scale: int | None =0, *, ge: int | float | decimal.Decimal | None =None, gt: int | float | decimal.Decimal | None =None, le: int | float | decimal.Decimal | None =None, lt: int | float | decimal.Decimal | None =None, is_between: IsBetweenTuple =None, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidDecimal Decimal valid column constructor.
- Parameters:¶
- name: str | Collection[str] | Selector | None =
None¶ - precision: int | None =
None¶ - scale: int | None =
0¶ - ge: int | float | decimal.Decimal | None =
None¶ - gt: int | float | decimal.Decimal | None =
None¶ - le: int | float | decimal.Decimal | None =
None¶ - lt: int | float | decimal.Decimal | None =
None¶ - is_between: IsBetweenTuple =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | Selector | None =
Examples¶
In [1]: print( ...: pg.vcol.Decimal() ...: ) ...: ValidColumn(name=None, dtype=[Decimal(precision=38, scale=0)], required=True, allow_nulls=False, unique=False, constraints=set())
Other
Binary
-
paguro.vcol.Binary(name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
None, *, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidBinary Binary valid column constructor.
- Parameters:¶
- name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
None¶ - required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
Examples¶
In [1]: print( ...: pg.vcol.String() ...: ) ...: ValidColumn(name=None, dtype=[String], required=True, allow_nulls=False, unique=False, constraints=set())
Boolean
-
paguro.vcol.Boolean(name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
None, *, required: bool | 'dynamic' =True, allow_nulls: bool =False, unique: bool =False, **constraints: Any) ValidBoolean Boolean valid column constructor.
- Parameters:¶
- name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
None¶ The column name.
- required: bool | 'dynamic' =
True¶ Whether there must be a column with the specified name in the target data.
- allow_nulls: bool =
False¶ Whether the column is allowed to contain null values.
- unique: bool =
False¶ Whether the values in the column are unique: the number of unique values in the column equal the number of rows in the data.
Typically a useful check to have if the column uniquely identifies the rows of the data.
- **constraints: Any¶
Constraints on the values of the column
- Constraints can be passed in 2 alternative ways:
- as name-Polars Expressions
Where the key is the custom name for the constraint (your choice) and the value the polars.all` expression. Within the validator
allrefers to the specified column.pg.vcol("a", a_is_ge=pl.all().ge(1))
- as method-argument
key: the name of the polars expression method value: the argument to pass in the polars expression
pg.vcol("a", ge=1)
- name: str | Collection[str] | TypeAliasForwardRef('Selector') | None =
Examples¶
In [1]: print( ...: pg.vcol.String() ...: ) ...: ValidColumn(name=None, dtype=[String], required=True, allow_nulls=False, unique=False, constraints=set())